4,269 research outputs found

    Time and Frequency Transfer in a Coherent Multistatic Radar using a White Rabbit Network

    Get PDF
    Networks of coherent multistatic radars require accurate and stable time and frequency transfer (TFT) for range and Doppler estimation. TFT techniques based on global navigation satellite systems (GNSS), have been favoured for several reasons, such as enabling node mobility through wireless operation, geospatial referencing, and atomic clock level time and frequency stability. However, such systems are liable to GNSS-denial, where the GNSS carrier is temporarily or permanently removed. A denial-resilient system should consider alternative TFT techniques, such as the White Rabbit (WR) project. WR is an Ethernet based protocol, that is able to synchronise thousands of nodes on a fibre-optic based network with sub-nanosecond accuracy and picoseconds of jitter. This thesis evaluates WR as the TFT network for a coherent multistatic pulse-Doppler radar – NeXtRAD. To test the hypothesis that WR is suitable for TFT in a coherent multistatic radar, the time and frequency performance of a WR network was evaluated under laboratory conditions, comparing the results against a network of multi-channel GPS-disciplined oscillators (GPSDO). A WR-disciplined oscillator (WRDO) is introduced, which has the short-term stability of an ovenised crystal (OCXO), and long-term stability of the WR network. The radar references were measured using a dual mixer time difference technique (DMTD), which allows the phase to be measured with femtosecond level resolution. All references achieved the stringent time and frequency requirements for short-term coherent bistatic operation, however the GPSDOs and WRDOs had the best short-term frequency stability. The GPSDOs had the highest amount of long-term phase drift, with a peak-peak time error of 9.6 ns, whilst the WRDOs were typically stable to within 0.4 ns, but encountered transient phase excursions to 1.5 ns. The TFT networks were then used on the NeXtRAD radar, where a lighthouse, Roman Rock, was used as a static target to evaluate the time and frequency performance of the references on a real system. The results conform well to the laboratory measurements, and therefore, WR can be used for TFT in coherent radar

    Irrigation Development to Improve the Lives of Impoverished Children in Kanchanaburi, Thailand

    Get PDF
    The New Life for Abused Children Project in Kanchanaburi, Thailand was established to rehabilitate underprivileged children and prepare them to reenter society. The Project is currently integrating a 32 hectare oil palm plantation into their program, but they lack a proper irrigation system. Based on environmental and social assessments of the project we designed a model system for irrigation as well as an irrigation education manual and fundraising brochure to support the system

    Exomoon simulations

    Full text link
    We introduce and describe our newly developed code that simulates light curves and radial velocity curves for arbitrary transiting exoplanets with a satellite. The most important feature of the program is the calculation of radial velocity curves and the Rossiter-McLaughlin effect in such systems. We discuss the possibilities for detecting the exomoons taking the abilities of Extremely Large Telescopes into account. We show that satellites may be detected also by their RM effect in the future, probably using less accurate measurements than promised by the current instrumental developments. Thus, RM effect will be an important observational tool in the exploration of exomoons.Comment: 5 pages, 2 figures with 9 figure panels, accepted by EM&

    Variability and subjectivity in the grading process for evaluating the performance of latent fingermark detection techniques

    Get PDF
    When assessing latent fingermark development methods, forensic researchers commonly evaluate treated samples using a grading scale. However, the subjective nature of these evaluation methods leaves the results of such investigations open to criticism for potential grader bias. Assessment of fingermark development quality is ultimately dependent on an individual's background and experience. A pilot study was conducted as a preliminary stage of a large-scale international collaboration. A set of 80 fingermark samples was developed with 1,2-indanedione-zinc chloride. Grades for photographic images of the developed fingermarks were assigned independently by 11 fingermark researchers. Sixty-seven percent of the scores given to each individual sample were the same as the median grade, and 99% of the scores were within 1 grade. The researchers were also assessed on their consistency by including 20 duplicate images to be graded. Seventy-eight percent of the grades given were identical to their original scores. These results indicate that a small group of independent fingermark graders is sufficient to produce reliable and consistent data in projects requiring the assessment of fingermark quality

    Investigations into the photophysical and electronic properties of pnictoles and Their pnictenium counterparts

    Get PDF
    The reaction of phosphole/arsole starting materials with a series of halide abstraction reagents afforded their respective phosphenium/arsenium complexes. UV–vis absorption and luminescence studies on these cations showed interesting emission profiles, which were found to be dependent upon counterion choice. The addition of a reductant to the phosphole reagent garnered a dimeric species with a central P–P bond, which when heated was found to undergo homolytic bond cleavage to produce an 11π radical complex. Electron paramagnetic resonance (EPR), supported by density functional theory (DFT) calculations, was used to characterize this radical species

    Pumped-Up SU(1,1) interferometry

    Get PDF
    Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these “side modes” is typically small, this limits the interferometer’s absolute sensitivity. We propose an alternative “pumped-up” approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems—both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel—both absolutely and in comparison to conventional SU(1,1) interferometry—in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices

    Fingerprinting the impacts of global change on tropical forests

    Get PDF
    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests

    An approach to exact solutions of the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model

    Full text link
    By utilizing the property of the supersymmetric structure in the two-level multiphoton Jaynes-Cummings model, an invariant is constructed in terms of the supersymmetric generators by working in the sub-Hilbert-space corresponding to a particular eigenvalue of the conserved supersymmetric generators. We obtain the exact solutions of the time-dependent Schr\"{o}dinger equation which describes the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model (TLTJCM) by using the invariant-related unitary transformation formulation. The case under the adiabatic approximation is also discussed. Keywords: Supersymmetric Jaynes-Cummings model; exact solutions; invariant theory; geometric phase factor; adiabatic approximationComment: 7 pages, Late

    A Colorimetric Chemosensor Based on a Nozoe Azulene That Detects Fluoride in Aqueous/Alcoholic Media

    Get PDF
    Colorimetry is an advantageous method for detecting fluoride in drinking water in a resource-limited context, e. g., in parts of the developing world where excess fluoride intake leads to harmful health effects. Here we report a selective colorimetric chemosensor for fluoride that employs an azulene as the reporter motif and a pinacolborane as the receptor motif. The chemosensor, NAz-6-Bpin, is prepared using the Nozoe azulene synthesis, which allows for its rapid and low-cost synthesis. The chemosensor gives a visually observable response to fluoride both in pure organic solvent and also in water/alcohol binary solvent mixtures
    • …
    corecore